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Developing an accurate empirical 
correlation for predicting 
anti‑cancer drugs’ dissolution 
in supercritical carbon dioxide
Fardad Faress1, Amin Yari2, Fereshteh Rajabi Kouchi3, Ava Safari Nezhad4, 
Alireza Hadizadeh5,6, Leili Sharif Bakhtiar7*, Yousef Naserzadeh8 & Niloufar Mahmoudi8

This study introduces a universal correlation based on the modified version of the Arrhenius equation 
to estimate the solubility of anti-cancer drugs in supercritical carbon dioxide (CO2). A combination 
of an Arrhenius-shape term and a departure function was proposed to estimate the solubility of 
anti-cancer drugs in supercritical CO2. This modified Arrhenius correlation predicts the solubility of 
anti-cancer drugs in supercritical CO2 from pressure, temperature, and carbon dioxide density. The 
pre-exponential of the Arrhenius linearly relates to the temperature and carbon dioxide density, and 
its exponential term is an inverse function of pressure. Moreover, the departure function linearly 
correlates with the natural logarithm of the ratio of carbon dioxide density to the temperature. 
The reliability of the proposed correlation is validated using all literature data for solubility of anti-
cancer drugs in supercritical CO2. Furthermore, the predictive performance of the modified Arrhenius 
correlation is compared with ten available empirical correlations in the literature. Our developed 
correlation presents the absolute average relative deviation (AARD) of 9.54% for predicting 316 
experimental measurements. On the other hand, the most accurate correlation in the literature 
presents the AARD = 14.90% over the same database. Indeed, 56.2% accuracy improvement in the 
solubility prediction of the anti-cancer drugs in supercritical CO2 is the primary outcome of the current 
study.

Supercritical is a technical phrase to refer to operating conditions where both pressure and temperature are 
higher than their critical values for a given substance1. It is widely accepted that supercritical fluids (SCF) pose 
some valuable advantages over traditional solvents (liquid-like density, gas-like transport properties, low surface 
tension, and good mass transfer capacity)2. These characteristics have drawn attention to the SCFs as solvent 
media for supercritical extraction/purification purposes in a wide range of applications1. Carbon dioxide (CO2) 
is likely the most trustful supercritical fluid in energy3, food4, pharmaceutical5,6, and bioactive agent delivery7–10 
applications. Indeed, the non-toxic, inflammable, and non-explosive nature of supercritical carbon dioxide 
(SCCO2) is responsible for these trustful applications2. Furthermore, the SCCO2 critical characteristics are mild 
(temperature = 31.1 °C, pressure = 73.8 bar)11, it is recyclable, simply available at low expense, and covers the 
real-field requirement2.

The SCCO2 has outstanding applications in pharmaceutical manufacturing processes12,13. Drug solubility 
in SCF is the most crucial information for the feasibility study, development, and construction of the pharma-
ceutical processes utilized the supercritical fluids as solvent media14. Since cancer is a leading cause of human 
death all around the world15–18, researchers experimentally measured the solubility of different anti-cancer drugs 
in supercritical CO2, including sorafenib tosylate19, sunitinib malate20, azathioprine21, busulfan22, tamoxifen23, 
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letrozole24, tamsulosin25, capecitabine26, paclitaxel27, 5-fluorouracil27, thymidine27, and decitabine28. Unfortu-
nately, the laboratory measurement of drug solubility in supercritical CO2 at whole ranges of pressures and 
temperatures is time-consuming and requires high economic expenses2.

In order to resolve these operating and economic problems, different thermodynamic-based models (known 
as the equation of state)29–32, intelligent paradigms14, predictive model33,34, and empirical correlations35–44 are pro-
posed to simulate different phenomena, including estimating solids solubility in SCCO2. Sodeifian et al. compared 
the accuracy of the Peng-Robinson (PR), Soave–Redlich–Kwong (SRK), and available empirical correlations for 
predicting solubility of sorafenib tosylate19, sunitinib malate20, and azathioprine21 anti-cancer drugs in SCCO2. 
Performances of the PR equation of state, statistical associating fluid theory of variable range (SAFT-VR), and 
six empirical correlations for predicting tamsulosin solubility in supercritical CO2 have also been compared25. 
Generally, the estimation methods of drug solubility in the SCCO2 using the equations of state (EoS) are often 
mathematically complicated2, require high computations efforts2, need relatively high entry information2,45,46, 
provide high levels of uncertainty19, and may sometimes fail20. More precisely, they need the operating condi-
tions, critical properties, and also drug characteristics to deliver their predictions19,20.

The least-squares support vector machines14, artificial neural networks47–50, quantitative structure–property 
relationships51, adaptive neuro-fuzzy inference systems52,53, wavelet transform54–57, and dynamic simulation58–60 
are some of the approaches may be used for estimating the solid solubility in supercritical carbon dioxide. Utiliz-
ing these intelligent paradigms is only possible when their structure, adjusted hyper-parameters, and performed 
pre-processing and post-processing stages be completely available61–65. Despite an acceptable accuracy of these 
intelligent methods, some parts of their information are often missed to present, and it is hard or even impos-
sible to be used by other researchers.

The empirical correlations that only need temperature, pressure, and pure SCCO2 density to predict solid 
solubility in supercritical carbon dioxide29–32 have attracted greater attention in this regard. In order to escape 
an unnecessary repetition, the mathematical expressions of these empirical correlations will be reviewed in the 
subsequent sections (see “Most widely used correlations for drug solubility in SCCO2”). The mathematical for-
mulations of these empirical correlations are simple, understandable, ready to use, and their accuracy is often far 
better than the thermodynamic-based models19,20. Moreover, it is possible to incorporate them in an appropriate 
optimization algorithm to determine the operating condition that maximizes the drug solubility in SCCO2.

The current research briefly reviewed ten well-known and reliable empirical correlations for estimating solid 
solubility in supercritical CO2

35–44. After that, a universal approach based on the modified Arrhenius model is 
introduced to relate the anti-cancer drug solubility in SCCO2. This universal approach added a departure function 
to the Arrhenius-shape term to estimate the anti-cancer drug solubility in SCCO2. The predictive performance 
of the modified Arrhenius model and available correlations in the literature is compared using all available 
experimental data for solubility of anti-cancer drugs in SCCO2. 316 experimental data for solubility of sorafenib 
tosylate19, sunitinib malate20, azathioprine21, busulfan22, tamoxifen23, letrozole24, tamsulosin25, capecitabine26, 
paclitaxel27, 5-fluorouracil27, thymidine27, and decitabine28 in SCCO2 are used to perform this comparison. The 
results show that the modified Arrhenius model improves the previously achieved accuracy in the literature by 
more than 56.2%.

Materials and methods
The first part of this section presents the available experimental measurements for the solubility of anti-cancer 
drugs in supercritical CO2. The second part reviews the most well-known empirical models for correlating 
the solid solubility in SCCO2 to the independent variables (pressure, temperature, and pure supercritical CO2 
density).

Anti‑cancer drugs.  As mentioned earlier, cancer is approved as the leading cause of human death 
worldwide15. Therefore, all aspects of anti-cancer drugs, including their solubility in the supercritical CO2 are 
an exciting research topic for both academic and manufacturing purposes. Based on our best knowledge, the 
solubility of only twelve anti-cancer drugs in the supercritical carbon dioxide were measured up to now. These 
anti-cancer drugs are sorafenib tosylate19, sunitinib malate20, azathioprine21, busulfan22, tamoxifen23, letrozole24, 
tamsulosin25, capecitabine26, paclitaxel27, 5-fluorouracil27, thymidine27, and decitabine28. Table  1 separately 
reports the range of pressure, temperature, supercritical CO2 density, and anti-cancer drug solubility for all the 
laboratory-scale studies. Furthermore, the numbers of available measurements in each research are also shown 
in this table.

Most widely used correlations for drug solubility in SCCO2.  The developed empirical correlations by 
Chrastil35, Jouyban et al.36, Kumar and Johnstone37, Garlapati and Madras38, Bian et al.39, Bartle et al.40, Méndez-
Santiago and Teja41, Sodeifian et al.42, Tan et al.43, and Gordillo et al.44 are widely used to estimate drug solubility 
in supercritical carbon dioxide. It should be mentioned that some of these correlations were initially proposed 
for the prediction of the solid (not specifically drug) solubility in SCCO2. However, researchers preserved their 
mathematical forms, readjusted their coefficients, and modified them to be applied in the drug/SCCO2 phase 
equilibria modeling19,25,26,28.

The mathematical formulations of these empirical correlations are given in Table 2. It should be mentioned 
that excluding Eq. (1) that predicts the solubility in terms of the mass of solids per volume of the solvent ( c2 ), all 
other considered correlations provide the solubility in terms of mole fraction unit ( y2 ). Furthermore, tempera-
ture, pressure, and pure SCCO2 density are designated by T , P , and ρ , respectively. Finally, the coefficients of the 
correlations are shown by the a1 to a6 notations.
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Excluding the pure SCCO2 density of the Eq. (3) that is in the kmol/m3 unit, the units of all other variables 
are in complete agreement with those unites presented in Table 1.

Results and discussion
This section presents the idea of developing the modified Arrhenius correlation, adjusts its unknown coef-
ficients, and compares its accuracy with other available correlations. The next part of this section is devoted to 
the performance analysis of the modified Arrhenius correlation using different graphical methods. Finally, the 
modified Arrhenius correlation is employed to monitor the effect of operating conditions on the anti-cancer 
drug solubility in SCCO2.

Developing the modified Arrhenius correlation.  The massive data processing stages are performed on 
the experimental values of solubility of each drug in SCCO2 to reach a general form of the proposed correlation 
as follows:

Equation (11) states that the anti-cancer drug solubility in the SCCO2 can be accurately estimated by combin-
ing an Arrhenius term and a departure function.

At this stage, it is necessary to clarify how the pre-exponential and exponential parts of the Arrhenius term 
are related to the influential variables. Then, the departure function incorporates to reduce the deviation between 
the Arrhenius term predictions and experimental measurements.

Spearman and Pearson are two well-known relevancy discovery scenarios in the field of data processing62. 
They introduce the relevancy between a pair of feature-response variables by a factor in the range of − 1 to + 1. 
The minus, zero, and positive factors correspond with indirect dependency, no-relation, and direct depend-
ency, respectively62,66. The strength of either direct or indirect relevancy increases by increasing the magnitude 
of factors67. Furthermore, the higher absolute value of the Spearman than the Pearson factor confirms that the 
non-linear relationship is stronger than the linear one and vice versa62,66.

Figure 1 exhibits the values of relevancy factor between anti-cancer drug solubility and pressure, temperature, 
and pure SCCO2 density. This figure confirms that direct relationships exist between the response and all feature 

(11)y2 = Arrhenius term + departure function

Table 1.   Literature data for solubility of anti-cancer drugs in supercritical carbon dioxide.

CO2 (1) + drug (2) Temperature (K) Pressure (MPa) CO2 density (kg/m3) Drug solubility* × 106 No. data

Sorafenib tosylate19 308–338 12–27 388–914 0.68–12.57 24

Sunitinib malate20 308–338 12–27 388–914 5–85.6 24

Azathioprine21 308–338 12–27 388–914 2.7–18.3 24

Busulfan22 308–338 12–40 383–971 32.7–865 32

Tamoxifen23 308–338 12–40 383–971 18.8–989 32

Letrozole24 318–348 12–36 319–922 1.6–85.1 20

Tamsulosin25 308–338 12–27 384–914 0.18–10.13 24

Capecitabine26 308–348 15.2–35.4 477–955 2.7–158.8 40

Paclitaxel27 308–328 10–27.5 654–915 1.2–6.2 21

5-Fluorouracil27 308–328 12.5–25 541–901 3.8–14.6 18

Thymidine27 308–328 10–30 325–928 1.2–8 25

Decitabine28 308–338 12–40 383–971 28.4–1070 32

Table 2.   Available empirical correlations for solute/drug solubility in supercritical carbon dioxide.

Correlation Formula

Chrastil35 c2 = ρa 1 exp
(

a2
T + a3

)

Equation (1)

Jouyban et al.36 ln
(

y2
)

= a1 + a2 ρ + a3 P
2
+ a4 P T + a5

T
P + a6 ln (ρ) Equation (2)

Kumar and Johnstone37 ln
(

y2
)

= a1 + a2 ρ +
a3
T

Equation (3)

Garlapati and Madras38 ln
(
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)
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T + a5 ln (ρT) Equation (4)

Bian et al.39 y2 = ρ(a 1 + a 2 ρ) exp
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Equation (5)
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= a1 + a2 ρ + a3 T Equation (7)
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variables. The anti-cancer drug solubility has the strongest relationship with the pressure and weakest depend-
ency to the temperature. Moreover, since the Pearson factors for temperature and CO2 density are higher than 
the Spearman ones, the linear relationship is superior to the non-linear one. The higher Spearman factor than 
Pearson for the pressure shows that the anti-cancer drug solubility non-linearly relates to the pressure.

These findings are in complete agreement with the mathematical form of the Arrhenius model. Indeed, the 
pre-exponential term can be a function of temperature and CO2 density, and the exponential term provides the 
non-linear relation with the pressure.

The previous findings specify the linear dependency of the anti-cancer drug solubility on temperature and 
CO2 density and its non-linear relationship with the pressure. Figures 2, 3 and 4 are plotted to approve these 
findings through visual inspection.

The experimental values of typical anti-cancer drug solubility in the SCCO2 as a function of temperature 
are shown in Fig. 2. This figure approves that the temperature dependency of the solubility of the anti-cancer 
drugs is almost linear. The departure function is efficiently involved in compensating for the deviation from the 
linear relationship.

Since the density of the pure SCCO2 changes by both pressure and temperature, it is impossible to monitor 
the dependency of the anti-cancer drug solubility on the CO2 density in the two-dimensional graph. Hence, 
Fig. 3 depicts the solubility of a typical anti-cancer drug versus the product of pressure and CO2 density. The 
linear dependency of the anti-cancer drug solubility on the pure SCCO2 density can be inferred from this figure. 
Similar to the temperature, the departure function can compensate for the deviation from the linear relationship 
between drug solubility and CO2 density.

The semi-logarithm presentation of typical anti-cancer drug solubility in the SCCO2 versus the inverse of 
pressure is shown in Fig. 4. This figure approves that the anti-cancer drug solubility in SCCO2 exponentially 
relates to the inverse of pressure, i.e., exp (−Ea/P) . The observed deviation between the exponential data and 
predictions of the Arrhenius term for the pressure effect is then reduced by applying the departure function.

In summary, the following Arrhenius-shape correlation68 is inferred to estimate the anti-cancer drug solubil-
ity in the SCCO2 (Eq. 12).

It is expected that some deviations observe between the Arrhenius term predictions and actual solubility 
data. However, it is possible to enhance the accuracy of the Arrhenius-shape model by diminishing the observed 
deviations. Therefore, a new term (i.e., departure function) adds to the Arrhenius-shape part to compensate for 

(12)Arrhenius term = f1(T , ρ) exp

(

−
Ea

P

)

Figure 1.   Relevancy between the solubility of anti-cancer drugs in supercritical CO2 and temperature, pressure, 
and carbon dioxide density.
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Figure 2.   Dependency of sorafenib tosylate solubility in the supercritical CO2 on the isobaric variation of 
temperature (the cartesian coordinate).
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Figure 3.   The variation of sorafenib tosylate solubility in the SCCO2 by the solvent density (the cartesian 
coordinate).
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this deviation. The observed deviation shows the highest compatibility with the natural logarithm of the CO2 
density to the temperature as follows:

In summary, the general form of the proposed correlation achieves by combining the Arrhenius term and 
departure function (Eq. 14).

Equation (15) presents the final form of the proposed correlation for estimating the solubility of the anti-
cancer drugs in supercritical CO2.

The pre-exponential part of the Arrhenius term linearly combines the effect of temperature and CO2 density, 
while its exponential part is a function of pressure only. The departure function linearly relates to the natural 
logarithm of the CO2 density to the temperature ratio.

Adjusting the coefficients of the correlations.  After determining the general form of the proposed correlation, it 
is now necessary to adjust its coefficients using an appropriate method. The differential evolution (DE) optimi-
zation algorithm69,70 is employed to adjust these unknown coefficients through a non-linear regression process. 
The absolute average relative deviation (AARD%) between the model predictions and actual measurements is an 
objective function for the optimization stage. The AARD% formula can be expressed by Eq. (16)71.

Table 3 presents the adjusted coefficients for estimating the solubility of different anti-cancer drugs in the 
SCCO2.

The literature has already used some correlations (see Table 2) to estimate the anti-cancer drug solubility in 
SCCO2. Therefore, the researchers readjusted coefficients and apply them in the drug/SCCO2 systems. However, 
readjusting the coefficients of other ones are accomplished in the current study. Supplementary file presents the 

(13)departure function = f2

(

ln
( ρ

T

))

(14)y2 = f1(T , ρ) exp

(

−
Ea

P

)

+ f2

(

ln
( ρ

T

))

(15)y2 = (a1 T + a2 ρ + a3) exp
(

−
a4

P

)

+ a5 ln
( ρ

T

)

+ a6

(16)AARD% =
100

N

∑

(

∣
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2 − ycal2
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∣
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2

)
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Figure 4.   The effect of the inverse pressure on the sorafenib tosylate solubility in the SCCO2 (the semi-
logarithm coordinate).
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coefficients of the considered correlations for solubility of all anti-cancer drugs in supercritical CO2. The opti-
mization algorithm and objective function like that utilized for the modified Arrhenius model are also employed 
to adjust the coefficients of the literature correlations.

Comparative analysis.  This section compares the uncertainty in the predictions of the modified Arrhenius 
model and available correlations in the literature for solubility of anti-cancer drugs in SCCO2. The prediction 
uncertainty of all considered empirical correlations is measured in terms of the AARD% and reported in Table 4. 
First of all, it is better to clarify that the highlighted cells (gray color) are calculated in the present study, and the 
clean cells are those reported in the literature. As mentioned earlier, the associated coefficients for calculating 
this AARD% are presented in Supplementary file. The cells shown by the bold font are the smallest AARD% 
(the best results) obtained for estimating a specific anti-cancer drug in supercritical CO2. It is obvious that the 
modified Arrhenius correlation provides the most accurate results for solubility of six out of twelve anti-cancer 
drugs in SCCO2 (i.e., sorafenib tosylate, sunitinib malate, azathioprine, tamsulosin, 5-fluorouracil, thymidine).

On the other hand, the derived correlation by Bian et al.39 predicts the solubility of busulfan, tamoxifen, and 
decitabine in supercritical CO2 with the highest accuracy. Finally, the Garlapati and Madras38, Sodeifian et al.42, 
and Tan et al.43 correlations provide the most accurate predictions for only one anti-cancer drug.

Figure 5 exhibits the results of ranking analysis on the accuracy of the modified Arrhenius model and available 
empirical correlations in the literature for calculating the solubility of different anti-cancer drugs in supercritical 
CO2. It can be readily deduced that the proposed correlation in the current study not only presents the most 
accurate predictions for six anti-cancer drugs, it also has two second and three third ranks. The worst accuracy of 
the modified Arrhenius correlation is associated with capecitabine solubility in the SCCO2 (i.e., the fourth rank). 
The proposed correlation by Bian et al.39 with the three first, two second, four third, one fourth, and one ninth 
ranks is the next reliable model for the given task. On the other hand, the proposed correlations by Gordillo44, 
Jouyban et al.36, and Tan et al.43 have the highest levels of uncertainty, respectively.

Overall ranking of the correlation.  This section investigates/compares the accuracy of the modified Arrhenius 
model and available empirical correlation in the literature for estimating the whole of the database (solubility of 
all anti-cancer drugs in supercritical CO2). Hence, Fig. 6 illustrates the results of ranking analysis for the overall 
accuracy of the considered empirical correlations.

As expected, the modified Arrhenius correlation (with the smallest overall AARD = 9.54%) takes the first rank-
ing place for the whole of the experimental databank. The Bian et al. correlation39 with the overall AARD = 14.90% 
is the next accurate model for the given purpose. Generally, all available correlations in the literature have the 
AARD% equal to or higher than 14.9%. Indeed, the modified Arrhenius correlation improves the accuracy of 
available models in the literature by at least 56.2%.

Performance monitoring of the modified Arrhenius correlation.  The agreement between the 
experimental solubility data and calculated values by the developed modified Arrhenius correlation is plotted in 
Fig. 7. This figure includes the solubility of all anti-cancer drugs in the supercritical carbon dioxide. Despite an 
infinitesimal range of the solubility data (~ 10–4), an acceptable compatibility can be observed between actual and 
calculated information. The modified Arrhenius correlation provides the R2 (regression coefficient, Eq. 17a72) of 
0.98479 and standard error of 2.02 × 10–5 for all 316 experimental data.

(17a)R2
= 1−

N
∑

i=1

(

yexp
2

− ycal
2

)2

i
/

N
∑

i=1

(

yexp
2

− y
exp
2

)2

i

Table 3.   Adjusted coefficients of the proposed correlation for estimating the solubility of anti-cancer drugs in 
supercritical CO2.

Drug a1 × 10–6 a2 × 10–6 a3 × 10–6 a4 a5 × 10–6 a6 × 10–6

Sorafenib tosylate 1.4247605573 − 0.0500529210 − 385.827674360 45.3662839688 0 0.349064452

Sunitinib malate 0.2647256734 − 1.4200164959 1355.66373666 36.2840647550 − 12.8796352 0

Azathioprine 0.9468557792 − 0.0163521099 − 266.098396089 24.1069578946 8.36900373 − 4.83860672

Busulfan 60.280909168 − 16.630567159 − 1344.60675047 78.2721455261 76.7145899 0

Tamoxifen 144.11848954 − 42.703480295 − 1974.01401538 99.6434546809 41.05460792 6.14532671

Letrozole 8.7649418657 − 2.9569956441 4.94014077630 80.8669042062 4.145085191 − 0.53838515

Tamsulosin 0.7923204828 0.1478689559 − 368.263373717 35.1646118112 0 2.51134612

Capecitabine 48.093681561 − 12.750147899 − 2037.79351684 123.522295303 17.1813407 − 8.09385756

Paclitaxel 0.0068347581 0.0253752394 − 6.61523852780 14.6087222619 − 22.8448049 17.3239309

5-Fluorouracil 0.5186887168 − 0.1340640969 − 1.39609503380 44.0728502801 − 10.2690278 11.7076100

Thymidine 0.2122407854 0.0094685158 − 70.3123673279 18.0254848942 − 2.51330781 3.01138517

Decitabine 117.68771002 − 10.092201917 − 25,295.9332530 74.7951605316 48.3284747 0
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Table 4.   Uncertainty of the proposed model and available correlations in the literature in terms of 
AARD% (the italicized cells are calculated in the current study; the bold font values show the most accurate 
predictions).

Drug

Empirical correlation

Modified Arrhenius Chrastil35 Jouyban et al.36
Kumar and 
Johnston37

Garlapati and 
Madras38

Sorafenib tosylate 7.91 13.9019 14.4019 12.7019 11.0019

Sunitinib malate 3.89 21.2620 14.2020 38.85 17.1620

Azathioprine 4.29 9.8821 10.2121 16.26 8.6221

Busulfan 7.41 11.2022 88.70 7.5722 11.2022

Tamoxifen 12.02 16.5023 96.87 11.1023 16.4023

Letrozole 13.21 22.16 21.5024 39.42 7.1424

Tamsulosin 9.27 22.1125 82.70 15.2025 24.91
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Figure 5.   Outcome of the ranking analysis on the accuracy of the developed correlation and those available in 
the literature.
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Figure 6.   Overall ranking of the considered correlations to predict the solubility of anti-cancer drugs in 
supercritical carbon dioxide.

Figure 7.   Cross-plot of the modified Arrhenius predictions versus experimental measurements for anti-cancer 
drug solubility in supercritical CO2.
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Figure 8 investigates the performance of the modified Arrhenius correlation as a function of its relative devia-
tion (RD) for the available database. Equation (17b) expresses the formulation of the RD index73.

This figure confirms that the proposed correlation has successfully correlate the experimental solubility data 
to its corresponding influential variables. Excluding only three experiments, all other solubility measurements 
are estimated with the − 0.5 < RD < 0.5.

Differentiating between outlier/valid data.  The focus of this section is concentrated on diagno-
sis of either valid and suspect data. The experimentally-measured information often contain noises74 and 
uncertainties75. The leverage method is used to conduct this analysis76. As Fig. 9 shows, the leverage method 
discriminates between the valid (□ symbols) and suspect (○ symbols) information by plotting the standardized 
residual (SR) as a function of hat index. The SR can be obtained by dividing the residual error (RE) by its standard 
deviation (SD). Equations (18) to (21) present the RE, average value of RE, SD, and SR formula, respectively77,78.

(17b)RD =

(

y
exp
2 − ycal2

y
exp
2

)

i

i = 1, 2, . . . , N

(18)RE =

(

y
exp
2 − ycal2

)

i
i = 1, 2, ..., N

(19)RE =
1

N
×

N
∑

i=1

REi

(20)SD =

√

√

√

√

1

N
×

N
∑

i=1

(

RE − RE
)2

i

(21)SR =

(

RE

SD

)

i

i = 1, 2, . . . ,N

0 0.2 0.4 0.6 0.8 1 1.2
10-3

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.   The observed relative deviations for estimating each experimental measurement of anti-cancer drug 
solubility in supercritical carbon dioxide.
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Applying the leverage method on the experimental databank and estimated values of anti-cancer drug solu-
bility (Fig. 9) justifies that the major segment of the experimental data (92.72%) is valid, and only 23 datasets 
may be outliers.

The excellent accuracy of the modified Arrhenius correlation is previously approved using experimental 
data and comparison by other available models in the literature. Moreover, the current analysis confirms the 
validity of the experimental databank. Therefore, it can be claimed that the modified Arrhenius correlation can 
be readily used in the real application.

The numbers of possible outlier for each anti-cancer drug are reported in Fig. 10. It seems that the experimen-
tal solubility data for capecitabine, paclitaxel, and 5-fluorouracil with no outlier are the most reliable information. 
On the other hand, the solubility measurements of decitabine and tamoxifen (with seven and six outliers) in 
SCCO2 are the under-question experiments.

Investigating the effect of operating conditions.  It is previously shown in Table 4 that the modified 
Arrhenius correlation predict sunitinib malate (AARD = 3.89%) and thymidine (AARD = 16.64%) with the high-
est and lowest accuracies, respectively. This section investigates the effect of pressure and temperature on the 
solubility of these anti-cancer drugs in the SCCO2 both experimentally and modeling.

Figure 11 explains the effect of isothermal variation of the operating pressure on the sunitinib malate in 
supercritical carbon dioxide, while Fig. 12 is associated with the thymidine/SCCO2 binary system.

Excluding some scattering data in Fig. 12, generally the solubility of anti-cancer drugs in SCCO2 increase by 
increasing either pressure or temperature. This finding is in complete agreement of relevancy analysis (see Fig. 1). 
Moreover, an acceptable level of agreement exists between actual solubility data and their associated predictions 
by the modified Arrhenius correlation.

A relatively high scattering measurements for thymidine/SCCO2 system (especially at higher temperatures) 
is responsible for observed deviation between actual and modeling data. It is worth noting that this is the most 
accurate predictions among eleven different empirical correlations (Supplementary Information).

Investigating the effect drug type.  By measuring the average value of solubility of different anti-cancer 
drugs, it is concluded that busulfan and tamoxifen have the highest tendency for dissolution in supercritical 
CO2, while the sorafenib tosylate and tamsulosin show the lowest tendency.

Figures 13 and 14 present the modeling and experimental data for two high-soluble and two low-soluble 
anti-cancer drugs in SCCO2, respectively. The provided AARD of 7.92% (busulfan) and 7.40% (tamoxifen) for 
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Figure 9.   Differentiating between valid and suspect data collected from the literature.
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Figure 10.   Numbers of detected outliers for the considered anti-cancer drugs.
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Figure 11.   Variation of the sunitinib malate solubility in the supercritical CO2 as a function of operating 
pressure and temperature.
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dioxide.
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the high-soluble anti-cancer drugs by the modified Arrhenius correlation is a justification for excellent perfor-
mance of the model.

On the other hand, the proposed correlation predicts the solubility of the low-soluble anti-cancer drugs with 
the AARD of 8.44% (tamsulosin) and 17.92% (sorafenib tosylate).

It should be mentioned that this level of uncertainty for this ultra-low variable (anti-cancer drug solubility 
in SCCO2) has its own scientific and real-field merits.

Maximum achievable drug solubility in SCCO2.  The previous analysis approved that the busulfan is 
the most soluble anti-cancer drug in the supercritical CO2. Therefore, for locating the operating condition that 
maximizes the busulfan solubility in the SCCO2, it is necessary to monitor it for all pressures and temperatures. 
Figure 15 exhibits the busulfan solubility in SCCO2 for all possible operating conditions from experimental and 
modeling perspectives.

Like all other analyses, an excellent performance of the modified Arrhenius correlation can be justified in 
this analysis too. This figure also clarifies that the positive effect of pressure on the drug solubility intensifies 
by increasing the temperature. In other word, the slope of solubility with respect to the pressure increases by 
increasing temperature.

Finally, both experimental data and modeling results show that the highest busulfan solubility in the SCCO2 
may be achieved at the highest allowable temperature and pressure (i.e., P = 40 bar, T = 338 K).

Conclusion
A combination of the Arrhenius-shape and departure functions is proposed to correlate the anti-cancer drug 
solubility in the supercritical carbon dioxide. The pre-exponential part of the Arrhenius-shape term is linearly 
related to the temperature and carbon dioxide density, and its exponential part inversely relates to the pressure. 
The departure function is directly related to the natural logarithm of the carbon dioxide density to the tempera-
ture ratio. The developed correlation outperformed all well-known literature equations for predicting the solute 
solubility in supercritical carbon dioxide. The modified Arrhenius correlation provided the AARD = 9.54% and 
R2 = 0.98479 for estimating all experimental datasets in the literature. In contrast, the most accurate correlation 
in the literature (i.e., Bian et al. correlation) showed the AARD = 14.90% for predicting the considered database. 
It is possible to improve predicting accuracy of anti-cancer drug solubility in supercritical CO2 by more than 
56% using the developed correlation in this study. The relevancy analysis exhibited that anti-cancer drug solubil-
ity in supercritical CO2 increases by increasing either pressure and temperature. Furthermore, it is found that 
less than 7.5% of the literature data are suspect information, and the remaining 92.5% are valid measurements.  
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Figure 14.   The smallest amount of drug solubility in SCCO2 at temperature = 318 K.
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The provided Supplementary Material reports the adjusted coefficients of the available empirical correlations 
in the literature.

Data availability
All data generated or analyzed during this study are available on reasonable request from the corresponding 
author.
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